Copied to
clipboard

G = C42.385D4order 128 = 27

18th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.385D4, (C2×C8)⋊4C8, C4⋊C8.6C4, C4.2(C4×C8), (C2×C4).156D8, (C2×C4).65Q16, C2.1(C82C8), C2.1(C81C8), C4.2(C8⋊C4), (C22×C8).22C4, (C2×C4).50C42, (C22×C4).67Q8, C4.17(C22⋊C8), C22.15(C4⋊C8), C23.78(C4⋊C4), C42.251(C2×C4), (C2×C4).123SD16, (C22×C4).806D4, (C2×C4).66M4(2), C4.41(D4⋊C4), C4.27(Q8⋊C4), C22.15(C2.D8), C22.11(C4.Q8), C2.1(C22.4Q16), C22.9(C8.C4), C2.1(C4.C42), (C2×C42).1025C22, C2.6(C22.7C42), C22.18(C2.C42), (C2×C4×C8).2C2, (C2×C4⋊C8).1C2, (C2×C4).69(C2×C8), (C2×C4).64(C4⋊C4), (C22×C4).463(C2×C4), (C2×C4).369(C22⋊C4), SmallGroup(128,9)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C42.385D4
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C42.385D4
C1C2C4 — C42.385D4
C1C22×C4C2×C42 — C42.385D4
C1C22C22C2×C42 — C42.385D4

Generators and relations for C42.385D4
 G = < a,b,c,d | a4=b4=1, c4=a2, d2=a, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=a-1bc3 >

Subgroups: 136 in 90 conjugacy classes, 60 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, C22×C4, C4×C8, C4⋊C8, C4⋊C8, C2×C42, C22×C8, C22×C8, C2×C4×C8, C2×C4⋊C8, C42.385D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), D8, SD16, Q16, C2.C42, C4×C8, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C8.C4, C82C8, C81C8, C22.7C42, C22.4Q16, C4.C42, C42.385D4

Smallest permutation representation of C42.385D4
Regular action on 128 points
Generators in S128
(1 41 5 45)(2 42 6 46)(3 43 7 47)(4 44 8 48)(9 94 13 90)(10 95 14 91)(11 96 15 92)(12 89 16 93)(17 108 21 112)(18 109 22 105)(19 110 23 106)(20 111 24 107)(25 125 29 121)(26 126 30 122)(27 127 31 123)(28 128 32 124)(33 61 37 57)(34 62 38 58)(35 63 39 59)(36 64 40 60)(49 80 53 76)(50 73 54 77)(51 74 55 78)(52 75 56 79)(65 85 69 81)(66 86 70 82)(67 87 71 83)(68 88 72 84)(97 119 101 115)(98 120 102 116)(99 113 103 117)(100 114 104 118)
(1 117 125 80)(2 73 126 118)(3 119 127 74)(4 75 128 120)(5 113 121 76)(6 77 122 114)(7 115 123 78)(8 79 124 116)(9 35 86 111)(10 112 87 36)(11 37 88 105)(12 106 81 38)(13 39 82 107)(14 108 83 40)(15 33 84 109)(16 110 85 34)(17 71 64 95)(18 96 57 72)(19 65 58 89)(20 90 59 66)(21 67 60 91)(22 92 61 68)(23 69 62 93)(24 94 63 70)(25 49 45 103)(26 104 46 50)(27 51 47 97)(28 98 48 52)(29 53 41 99)(30 100 42 54)(31 55 43 101)(32 102 44 56)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 37 41 57 5 33 45 61)(2 71 42 83 6 67 46 87)(3 39 43 59 7 35 47 63)(4 65 44 85 8 69 48 81)(9 97 94 119 13 101 90 115)(10 126 95 30 14 122 91 26)(11 99 96 113 15 103 92 117)(12 128 89 32 16 124 93 28)(17 54 108 77 21 50 112 73)(18 121 109 25 22 125 105 29)(19 56 110 79 23 52 106 75)(20 123 111 27 24 127 107 31)(34 116 62 98 38 120 58 102)(36 118 64 100 40 114 60 104)(49 68 80 88 53 72 76 84)(51 70 74 82 55 66 78 86)

G:=sub<Sym(128)| (1,41,5,45)(2,42,6,46)(3,43,7,47)(4,44,8,48)(9,94,13,90)(10,95,14,91)(11,96,15,92)(12,89,16,93)(17,108,21,112)(18,109,22,105)(19,110,23,106)(20,111,24,107)(25,125,29,121)(26,126,30,122)(27,127,31,123)(28,128,32,124)(33,61,37,57)(34,62,38,58)(35,63,39,59)(36,64,40,60)(49,80,53,76)(50,73,54,77)(51,74,55,78)(52,75,56,79)(65,85,69,81)(66,86,70,82)(67,87,71,83)(68,88,72,84)(97,119,101,115)(98,120,102,116)(99,113,103,117)(100,114,104,118), (1,117,125,80)(2,73,126,118)(3,119,127,74)(4,75,128,120)(5,113,121,76)(6,77,122,114)(7,115,123,78)(8,79,124,116)(9,35,86,111)(10,112,87,36)(11,37,88,105)(12,106,81,38)(13,39,82,107)(14,108,83,40)(15,33,84,109)(16,110,85,34)(17,71,64,95)(18,96,57,72)(19,65,58,89)(20,90,59,66)(21,67,60,91)(22,92,61,68)(23,69,62,93)(24,94,63,70)(25,49,45,103)(26,104,46,50)(27,51,47,97)(28,98,48,52)(29,53,41,99)(30,100,42,54)(31,55,43,101)(32,102,44,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,37,41,57,5,33,45,61)(2,71,42,83,6,67,46,87)(3,39,43,59,7,35,47,63)(4,65,44,85,8,69,48,81)(9,97,94,119,13,101,90,115)(10,126,95,30,14,122,91,26)(11,99,96,113,15,103,92,117)(12,128,89,32,16,124,93,28)(17,54,108,77,21,50,112,73)(18,121,109,25,22,125,105,29)(19,56,110,79,23,52,106,75)(20,123,111,27,24,127,107,31)(34,116,62,98,38,120,58,102)(36,118,64,100,40,114,60,104)(49,68,80,88,53,72,76,84)(51,70,74,82,55,66,78,86)>;

G:=Group( (1,41,5,45)(2,42,6,46)(3,43,7,47)(4,44,8,48)(9,94,13,90)(10,95,14,91)(11,96,15,92)(12,89,16,93)(17,108,21,112)(18,109,22,105)(19,110,23,106)(20,111,24,107)(25,125,29,121)(26,126,30,122)(27,127,31,123)(28,128,32,124)(33,61,37,57)(34,62,38,58)(35,63,39,59)(36,64,40,60)(49,80,53,76)(50,73,54,77)(51,74,55,78)(52,75,56,79)(65,85,69,81)(66,86,70,82)(67,87,71,83)(68,88,72,84)(97,119,101,115)(98,120,102,116)(99,113,103,117)(100,114,104,118), (1,117,125,80)(2,73,126,118)(3,119,127,74)(4,75,128,120)(5,113,121,76)(6,77,122,114)(7,115,123,78)(8,79,124,116)(9,35,86,111)(10,112,87,36)(11,37,88,105)(12,106,81,38)(13,39,82,107)(14,108,83,40)(15,33,84,109)(16,110,85,34)(17,71,64,95)(18,96,57,72)(19,65,58,89)(20,90,59,66)(21,67,60,91)(22,92,61,68)(23,69,62,93)(24,94,63,70)(25,49,45,103)(26,104,46,50)(27,51,47,97)(28,98,48,52)(29,53,41,99)(30,100,42,54)(31,55,43,101)(32,102,44,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,37,41,57,5,33,45,61)(2,71,42,83,6,67,46,87)(3,39,43,59,7,35,47,63)(4,65,44,85,8,69,48,81)(9,97,94,119,13,101,90,115)(10,126,95,30,14,122,91,26)(11,99,96,113,15,103,92,117)(12,128,89,32,16,124,93,28)(17,54,108,77,21,50,112,73)(18,121,109,25,22,125,105,29)(19,56,110,79,23,52,106,75)(20,123,111,27,24,127,107,31)(34,116,62,98,38,120,58,102)(36,118,64,100,40,114,60,104)(49,68,80,88,53,72,76,84)(51,70,74,82,55,66,78,86) );

G=PermutationGroup([[(1,41,5,45),(2,42,6,46),(3,43,7,47),(4,44,8,48),(9,94,13,90),(10,95,14,91),(11,96,15,92),(12,89,16,93),(17,108,21,112),(18,109,22,105),(19,110,23,106),(20,111,24,107),(25,125,29,121),(26,126,30,122),(27,127,31,123),(28,128,32,124),(33,61,37,57),(34,62,38,58),(35,63,39,59),(36,64,40,60),(49,80,53,76),(50,73,54,77),(51,74,55,78),(52,75,56,79),(65,85,69,81),(66,86,70,82),(67,87,71,83),(68,88,72,84),(97,119,101,115),(98,120,102,116),(99,113,103,117),(100,114,104,118)], [(1,117,125,80),(2,73,126,118),(3,119,127,74),(4,75,128,120),(5,113,121,76),(6,77,122,114),(7,115,123,78),(8,79,124,116),(9,35,86,111),(10,112,87,36),(11,37,88,105),(12,106,81,38),(13,39,82,107),(14,108,83,40),(15,33,84,109),(16,110,85,34),(17,71,64,95),(18,96,57,72),(19,65,58,89),(20,90,59,66),(21,67,60,91),(22,92,61,68),(23,69,62,93),(24,94,63,70),(25,49,45,103),(26,104,46,50),(27,51,47,97),(28,98,48,52),(29,53,41,99),(30,100,42,54),(31,55,43,101),(32,102,44,56)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,37,41,57,5,33,45,61),(2,71,42,83,6,67,46,87),(3,39,43,59,7,35,47,63),(4,65,44,85,8,69,48,81),(9,97,94,119,13,101,90,115),(10,126,95,30,14,122,91,26),(11,99,96,113,15,103,92,117),(12,128,89,32,16,124,93,28),(17,54,108,77,21,50,112,73),(18,121,109,25,22,125,105,29),(19,56,110,79,23,52,106,75),(20,123,111,27,24,127,107,31),(34,116,62,98,38,120,58,102),(36,118,64,100,40,114,60,104),(49,68,80,88,53,72,76,84),(51,70,74,82,55,66,78,86)]])

56 conjugacy classes

class 1 2A···2G4A···4H4I···4P8A···8P8Q···8AF
order12···24···44···48···88···8
size11···11···12···22···24···4

56 irreducible representations

dim11111122222222
type+++++-+-
imageC1C2C2C4C4C8D4D4Q8M4(2)D8SD16Q16C8.C4
kernelC42.385D4C2×C4×C8C2×C4⋊C8C4⋊C8C22×C8C2×C8C42C22×C4C22×C4C2×C4C2×C4C2×C4C2×C4C22
# reps112841621142428

Matrix representation of C42.385D4 in GL4(𝔽17) generated by

13000
0100
00130
00013
,
1000
01600
0001
00160
,
9000
0400
00315
001514
,
9000
01600
00214
001415
G:=sub<GL(4,GF(17))| [13,0,0,0,0,1,0,0,0,0,13,0,0,0,0,13],[1,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[9,0,0,0,0,4,0,0,0,0,3,15,0,0,15,14],[9,0,0,0,0,16,0,0,0,0,2,14,0,0,14,15] >;

C42.385D4 in GAP, Magma, Sage, TeX

C_4^2._{385}D_4
% in TeX

G:=Group("C4^2.385D4");
// GroupNames label

G:=SmallGroup(128,9);
// by ID

G=gap.SmallGroup(128,9);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,184,248,1684,102]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2,d^2=a,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^-1*b*c^3>;
// generators/relations

׿
×
𝔽